Chemotaxis and calcium responses of phagocytes to formyl peptide receptor ligands is differentially regulated by cyclic ADP ribose.
نویسندگان
چکیده
Cyclic ADP ribose (cADPR) is a calcium-mobilizing metabolite that regulates intracellular calcium release and extracellular calcium influx. Although the role of cADPR in modulating calcium mobilization has been extensively examined, its potential role in regulating immunologic responses is less well understood. We previously reported that cADPR, produced by the ADP-ribosyl cyclase, CD38, controls calcium influx and chemotaxis of murine neutrophils responding to fMLF, a peptide agonist for two chemoattractant receptor subtypes, formyl peptide receptor and formyl peptide receptor-like 1. In this study, we examine whether cADPR is required for chemotaxis of human monocytes and neutrophils to a diverse array of chemoattractants. We found that a cADPR antagonist and a CD38 substrate analogue inhibited the chemotaxis of human phagocytic cells to a number of formyl peptide receptor-like 1-specific ligands but had no effect on the chemotactic response of these cells to ligands selective for formyl peptide receptor. In addition, we show that the cADPR antagonist blocks the chemotaxis of human monocytes to CXCR4, CCR1, and CCR5 ligands. In all cases, we found that cADPR modulates intracellular free calcium levels in cells activated by chemokines that induce extracellular calcium influx in the apparent absence of significant intracellular calcium release. Thus, cADPR regulates calcium signaling of a discrete subset of chemoattractant receptors expressed by human leukocytes. Since many of the chemoattractant receptors regulated by cADPR bind to ligands that are associated with clinical pathology, cADPR and CD38 represent novel drug targets with potential application in chronic inflammatory and neurodegenerative disease.
منابع مشابه
Differential activation of formyl peptide receptor signaling by peptide ligands.
Formyl peptide receptor (FPR) and formyl peptide receptor like 1 (FPRL1) play important roles in inflammation and immunity. Stimulation of FPR and FPRL1 initiates a cascade of signaling events, leading to activation of various phagocyte responses, including chemotaxis, superoxide generation, and exocytosis. Trp-Lys-Tyr-Met-Val-d-Met-NH2 (WKYMVm) is a synthetic peptide that binds to and activate...
متن کاملPituitary adenylate cyclase-activating polypeptide 27 is a functional ligand for formyl peptide receptor-like 1.
Although the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in the regulation of several immune responses, its target receptors and signaling mechanisms have yet to be fully elucidated in immune cells. In this study, we found that PACAP27, but not PACAP38, specifically stimulated intracellular calcium mobilization and ERK phosphorylation in human neu...
متن کاملUtilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation.
Trp-Lys-Tyr-Val-D-Met (WKYMVm) is a synthetic leukocyte-activating peptide postulated to use seven-transmembrane, G protein-coupled receptor(s). In the study to characterize the receptor(s) for WKYMVm, we found that this peptide induced marked chemotaxis and calcium flux in human phagocytes. The signaling induced by WKYMVm in phagocytes was attenuated by high concentrations of the bacterial che...
متن کاملT21/DP107, A synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-protein-coupled formyl peptide receptors.
A leucine zipper-like domain, T21/DP107, located in the amino terminus of the ectodomain of gp41, is crucial to the formation of fusogenic configuration of the HIV-1 envelope protein gp41. We report that the synthetic T21/DP107 segment is a potent stimulant of migration and calcium mobilization in human monocytes and neutrophils. The activity of T21/DP107 on phagocytes was pertussis toxin-sensi...
متن کاملHuman platelets exhibit chemotaxis using functional N-formyl peptide receptors.
OBJECTIVE Activated platelets participate in inflammatory and microbicidal processes by upregulation of surface selectins, shedding of CD40 ligand, and release of platelet microbicidal proteins and microparticles. Given their myeloid lineage, we hypothesized that platelets express functional N-formyl peptide receptors and respond to the bacterially derived chemotactic peptide N-formyl peptide w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 172 3 شماره
صفحات -
تاریخ انتشار 2004